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Cluster approximation solution of a two-species annihilation model
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A two-species reaction-diffusion model, in which particles diffuse on a one-dimensional lattice and annihi-
late when meeting each other, has been investigated. Mean-field equations for general choice of reaction rates
have been solved exactly. The cluster mean-field approximation of the model is also studied. It is shown that
the general form of large time behavior of one- and two-point functions of the number operators are determined
by the diffusion rates of the two type of species, and is independent of annihilation rates.
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I. INTRODUCTION

Recently properties of systems far from equilibrium ha
been studied by many people. Although mean-field te
niques may give qualitatively correct results for higher
mensions, for low-dimensional systems fluctuations have
portant roles. Different methods have been used to st
reaction-diffusion models, including analytical and appro
mational methods. Among them, the methods to obtain so
quantities can be obtained exactly. For example, in R
@1–3#, imposing some constraints on the reaction rates le
to a closed set of equations for average number densitie
each site. The empty interval method, is another meth
which has been also used to analyze the one-dimensi
dynamics of diffusion-limited coalescence@4–7#. The most
general one-dimensional reaction-diffusion model w
nearest-neighbor interactions that can be solved exa
through empty interval method, has been introduced in R
@8#. Empty interval method has been also generalized in R
@9,10#. Different methods has been introduced to calcul
different quantities exactly. However, exactly solvable mo
els are only a special class of reaction-diffusion models,
so people are motivated to use also approximate method
understand the role played by fluctuations. In Ref.@11#
a two-species model has been considered. In this m
there are three competing reactionsAA→B, BB→B,
and AB→B. Asymptotic density decay rates of the tw
types of species for a special choice of parameters have
studied using the Smoluchowski approximation and a
field theoretic renormalization group techniques. A simi
model focusing on the same diffusion rates for the two ty
of species has been studied in Ref.@12#. Field theoretic
renormalization group analysis suggest that contrary to
ordinary mean-field technique, the large time density of
minority species decays at the same rate as the majority
in one-dimensional case. Although an ordinary mean-fi
technique, generally, does not give correct results for lo
dimensional systems, its generalizations such as cluster m
field may give correct results. Anyhow, in the mean-fie
approximation at most one-point functions may be obtain
To obtain more-point functions one should use other me
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ods. One possible way is, to use a generalization of me
field known as the cluster mean field approximation.

One of the topics, which have absorbed many interest
recent years, is nonequilibrium phase transitions. There
examples, in which mean-field~MF! solutions are not valid,
but its generalization, cluster mean field~CMF! gives quali-
tatively correct results@13–16#. A coagulation-production
model is recently considered in Ref.@13#. Although MF
equations do not give correct results, CMF approximat
predicts phase transition, supported also by Monte Ca
simulations. Steady state properties in the absorbing phas
one-dimensional pair contact process model are also inv
gated using Monte Carlo simulations and the cluster appr
mation. The cluster approximation qualitatively confirms t
numerical results@14#.

The scheme of the paper is as follows. In Sec. II, t
mean-field equations for general parameters have b
solved exactly. It is seen that, the large time behavior of
average densities depend both on initial average dens
and reaction rates, and are independent of diffusion rates
Sec. III, the cluster mean-field equations for one- and tw
point functions have been solved numerically. It is sho
that the general large time behavior is determined by
diffusion rates.

II. THE MEAN-FIELD APPROXIMATION

The model addressed in this article is a two-species
clusion reaction-diffusion model. That is, each site is a
cancy (B) or at most occupied by a particleA or B. The
interaction is between nearest sites, and the adjacent
interact according to the following interactions with the i
dicated rates:

AB↔BA DA ,

BB↔BB DB ,

AA→BB l/2,
~1!

BB→BB l8/2,

AB→BB d/2,

BA→BB d/2.
©2002 The American Physical Society36-1
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We consider translationally invariant initial conditions. In th
mean-field approximation, diffusion rates do not have a
effect on the evolution equations of average number de
ties. The mean-field equations for the average densitiea
ª^A& t andbª^B& t are

da

dt
52la22dab,

~2!
db

dt
52l8b22dab.

The large time behaviors of these equations for spe
choices of parameters have been studied in Refs.@12,11#.
Now, we want to solve these equations exactly and then
will show that there are cases which are not considere
Refs. @12,11#, and give qualitatively correct result for larg
time behaviors, although the exponent of the decay rat
not correct.

Consider the following cases.
~I! l5l8. The evolution equation foruªb/a is

du

dt
5~l2d!u~12u!a. ~3!

Using Eqs.~2! and ~3!, it is seen that

du

da
52

~l2d!u~12u!

~l1du!a
, ~4!

which can be integrated to

U u21

u021U
11d/lS u0

u D5S a

a0
D 12d/l

, ~5!

whereu0 and a0 are the initial values ofu and a, respec-
tively. Now, we can obtain the large time behavior of t
average densities. It is seen that the large time behavioru
depends on the ratiod/l.

~1! d.l. At large times, obviouslya→0, so it is seen
from Eq.~5! that depending on the initial valueu0, two cases
may occur

at large timesu→`⇒u;al/d21, b;al/d,

at large timesu→0⇒u;ad/l21, b;ad/l.

Assuming an imbalance in the initial average densiti
for example,a0.b0 (u0,1), Eq. ~2! gives the large time
behavior ofa(t), andu(t) as

a~ t !;t21,
~6!

u~ t !;t12d/l,

which means that ford.l, in the mean-field approximation
the minority species dies out earlier than the majority o
and the decay exponent ofu(t) is independent of diffusion
rates.
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~2! d,l. As a consequence of the large time behavior
a, a→0, it is seen from Eq.~5! that at large timesu→1.
Defining eªu12uu,

e;a(12d/l)/(11d/l). ~7!

To obtain the large time behavior ofa andu, we should use
again Eqs.~2! and ~3!, which give

a~ t !;t21,
~8!

u12u~ t !u;t2(12d/l)/(11d/l),

which means that at large times both the minority and
majority species decay with the same rate. The exponen
decay rate does not depend on the diffusion rates.

~II ! lÞl8. For this case one arrives at

du

da
52

@~l2d!2~l82d!u#u

~l1du!a
, ~9!

which after integration gives

U 12
~l82d!u

l2d

12
~l82d!u0

l2d

U (d22l8l)/(d2l8)

S u

u0
D 2l

5S a

a0
D 2d1l

.

~10!

Now, it is easy to obtain large time behavior of the avera
densities. Generally, there are three cases

~1! d.l,l8. Depending on the initial average densitie
the large time behavior of the average densities ratio
u(t)→0 (b;ad/l) or u→` (b;al8/d), which means that
one kind of species decay faster.

~2! d,l,l8. Defining eªu2(l2d)/(l82d) , at large
timese(t);a@(d2l)(l82d)#/@ll82d2#. In this case two kinds of
species decay with the same rate.

~3! l,d,l8. At large times the average densities ra
u(t)→0, andb;ad/l.

As it is seen, in the MF approximation only for a spec
choice of parameters, which is independent of diffusi
rates, the two types of species decay with the same rate.
case withl5l8,d, and DA5DB has been considered i
Ref. @12#. Using field theoretic renormalization group anal
sis, it is shown that in one dimension both type of spec
decay with the same rate. Monte Carlo data also supports
field theory predictions in the one-dimensional model.

III. THE CLUSTER MEAN-FIELD APPROXIMATION

Now, we want to use cluster mean-field approximation
the diffusion rate for both type of species is the same,N
52 cluster mean-field approximation gives the same va
for the decay rates for both type of species, even if there is
imbalance in the initial average densities. If two type of sp
cies diffuse with different rates, irrespective of the initi
values, at large times particles with greater diffusion ra
decay more rapidly. For the nearest-neighbor interactio
6-2
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the evolution equation ofk-point functionŝ n1n2•••nk& con-
tains at most (k11)-point functions. So, generally, this se
of equations will be a hierarchy, which cannot be solv
exactly. One way to overcome this difficulty is to impos
constraints on the reaction rates that leads to disappear
of (k11)-point functions from the evolution equation o
k-point functions. This method has been used to calcu
some correlators exactly in Ref.@1#. Another possible way is
to use the cluster approximation. In thek-site cluster ap-
proximation, the set of evolution equations truncates and
encounters with a closed set of equations which may be s
able, at least numerically. Any how, for a two-site clust
approximation, a three-site joint probability for a sequence
nearest-neighbor sites is approximated by

P~A,B,C!5P~AuB,C!P~B,C!.
P~A,B!P~B,C!

P~B!
,

~11!

FIG. 1. Average densitieŝA& and ^B& as a function of time.
The rates areDA5DB51, l5l851000, andd53000.

FIG. 2. Ratio of average densities,u(t)5^B&/^A&, as a function
of time. For the dashed line, the rates areDA5DB51, l51000,
l85500, andd53000.
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d

ce

te

e
v-
r
f

where P(AuB) is the conditional probability. In the mean
field approximation there are three variables^A&, ^B&, and
^B&, only two of them are generally independent. In th
two-site cluster approximation, or pair approximation, t
variables arê A&, ^B&, ^B&, ^AB&, ^BB&, ^BB&, . . . ,
among them there are six independent variables which
choose to bê A&, ^B&, ^AA&, ^BB&, ^AB&, and ^BA&. In
fact in the pair approximation, besides the average dens
the two-point functions can also be obtained. The equati
of motion for the average densities whenDA5DB5..D are

d^A&
dt

52l^AA&2
d

2
^AB&2

d

2
^BA&,

~12!
d^B&

dt
52l^BB&2

d

2
^AB&2

d

2
^BA&.

Similarly to the mean-field approximation, the diffusion rat
do not appear in the evolution equations of the average d

FIG. 3. K(t)5^BA&/^AA& as a function of time.

FIG. 4. Average densities as a function of time. The rates
DA50.1 andDB51.
6-3
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sities. But in fact, they affect the average densities throu
the evolution equations of two-point functions, which are

d^AA&
dt

52
l

2
^AA&2l^AAA&2

d

2
^AAB&2

d

2
^BAA&

2D^AAB&2D^BAA&12D^ABA&, ~13!

d^BB&
dt

52
l

2
^BB&2l^BBB&2

d

2
^BBA&2

d

2
^ABB&

2D^BBB&2D^BBB&12D^BBB&, ~14!

d^AB&
dt

52
d

2
^AB&2

d

2
^BAB&2

d

2
^ABA&2D^ABB&

2D^BAB&12D^ABB&, ~15!

FIG. 5. Average densities as a function of time. The rates
DA51 andDB50.1.

FIG. 6. u(t)5^B&/^A& as a function of time. The rates arel
52400, l851000, d52500, and the greater diffusion rate is 1
and the smaller one is 0.1.
06613
h

d^BA&
dt

52
d

2
^BA&2

d

2
^BAB&2

d

2
^ABA&2D^BAB&

2D^BBA&12D^BBA&. ~16!

To solve these equations in the cluster approximation, o
should first approximate three-point functions and then
the equations should be expressed in terms of indepen
variables. For example,^ABB& can be written as

^ABB&'
^AB&^BB&

^B&
~17!

and then using probability conservation,^BB& should be
expanded,

^BB&5^B&2^BA&2^BB&. ~18!

A. DAÄDB

Figure 1 and 2 show results for^A&, ^B&, and the density
ratios u(t)ª^B&/^A& obtained using numerical solutions o
Eqs.~12!–~16!. As it is seen both types of species decay w
the same rate irrespective of equality or inequality of rea
tion rates l and l8. In the MF approach, K(t)
ª^BA&/^AA& is not an independent quantity and
^B&/^A&. But in the CMF approach it is an independent o
and the numerical result obtained for it is plotted in Fig.
As it is seen, in the CMF approximation it approaches
constant value at large times, means that both^AA& and
^BA& decay with the same rate. Equality of their decay ra
is independent of equality or inequality of reaction ratesl
andl8.

B. DAÅDB

As MF equations are independent of diffusion rates, th
solutions remain unaltered. But in the pair approximatio

e

FIG. 7. K(t)5^BA&/^AA& as a function of time. The rates ar
l5250, l85100, d5300, and the greater diffusion rate is 1, an
the smaller one is 0.1.
6-4
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only Eqs. ~12! remains unaltered. The diffusion rateD in
Eqs.~13! and~14! should be changed properly toDA or DB ,
and the Eqs.~15! and ~16! become

d^AB&
dt

52
d

2
^AB&2

d

2
^BAB&2

d

2
^ABA&2DB^ABB&

2DA^BAB&1~DA1DB!^ABB&, ~19!

d^BA&
dt

52
d

2
^BA&2

d

2
^BAB&2

d

2
^ABA&2DA^BAB&

2DB^BBA&1~DA1DB!^BBA&. ~20!

These set of equations has been solved numerically, and
numerical results for the average densities has been plo
.

ys

i,

06613
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in Figs 4 and 5. As it is seen, at large times, species w
greater diffusion rate dies out faster. If species with grea
diffusion rate are in majority initially, there is a crossover,
it is seen from Fig. 4. The general behavior of the avera
densities ratio is independent ofl, l8, andd, and the gen-
eral form of large time behavior is determined by the diff
sion rates. See Fig. 6. The numerical results forK(t) have
been summarized in Fig. 7.
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