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Cluster approximation solution of a two-species annihilation model
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A two-species reaction-diffusion model, in which particles diffuse on a one-dimensional lattice and annihi-
late when meeting each other, has been investigated. Mean-field equations for general choice of reaction rates
have been solved exactly. The cluster mean-field approximation of the model is also studied. It is shown that
the general form of large time behavior of one- and two-point functions of the number operators are determined
by the diffusion rates of the two type of species, and is independent of annihilation rates.
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[. INTRODUCTION ods. One possible way is, to use a generalization of mean-
field known as the cluster mean field approximation.

Recently properties of systems far from equilibrium have ~One of the topics, which have absorbed many interests in
been studied by many people. Although mean-field techrecent years, is nonequilibrium phase transitions. There are
niques may give qualitatively correct results for higher di-examples, in which mean-fieldF) solutions are not valid,
mensions, for low-dimensional systems fluctuations have imbut its generalization, cluster mean figldMF) gives quali-
portant roles. Different methods have been used to studiptively correct resultd13-16. A coagulation-production
reaction-diffusion models, including analytical and approxi-model is recently considered in Ref13]. Although MF
mational methods. Among them, the methods to obtain somggquations do not give correct results, CMF approximation
quantities can be obtained exactly. For example, in Refspredicts phase transition, supported also by Monte Carlo
[1-3], imposing some constraints on the reaction rates leadsimulations. Steady state properties in the absorbing phase of
to a closed set of equations for average number densities Pne-dimensional pair contact process model are also investi-
each site. The empty interval method, is another methodjated using Monte Carlo simulations and the cluster approxi-
which has been also used to analyze the one-dimensiongation. The cluster approximation qualitatively confirms the
dynamics of diffusion-limited coalescenf¢—7]. The most ~numerical result§14].
general one-dimensional reaction-diffusion model with The scheme of the paper is as follows. In Sec. II, the
nearest-neighbor interactions that can be solved exactljpean-field equations for general parameters have been
through empty interval method, has been introduced in Refsolved exactly. It is seen that, the large time behavior of the
[8]. Empty interval method has been also generalized in Refverage densities depend both on initial average densities
[9,10]. Different methods has been introduced to calculateand reaction rates, and are independent of diffusion rates. In
different quantities exactly. However, exactly solvable mod-Sec. lll, the cluster mean-field equations for one- and two-
els are only a special class of reaction-diffusion models, an@oint functions have been solved numerically. It is shown
so people are motivated to use also approximate methods tbat the general large time behavior is determined by the
understand the role played by fluctuations. In Rgfl]  diffusion rates.
a two-species model has been considered. In this model
there are three competing reactiodsA—(, BB—J, Il. THE MEAN-FIELD APPROXIMATION
and AB—J. Asymptotic density decay rates of the two _ ) o _
types of species for a special choice of parameters have been 1N€ model addressed in this article is a two-species ex-
studied using the Smoluchowski approximation and alsclusion reaction-diffusion mo_del. That is, gach site is a va-
field theoretic renormalization group techniques. A similar@ncy (J) or at most occupied by a partick or B. The
model focusing on the same diffusion rates for the two typeénteractlon is b_etween nearest sites, and_the ac_JJacent_snes
of species has been studied in REE2]. Field theoretic interact according to the following interactions with the in-

renormalization group analysis suggest that contrary to thdicated rates:
ordinary mean-field technique, the large time density of the

minority species decays at the same rate as the majority ones AJ—OA  Da,
in one-dimensional case. Although an ordinary mean-field
technique, generally, does not give correct results for low- BJ—OB Dg,
dimensional systems, its generalizations such as cluster mean
field may give correct results. Anyhow, in the mean-field AA—=DD N2,
approximation at most one-point functions may be obtained. (1)
To obtain more-point functions one should use other meth- BB—JJ \'/2,
AB—-JQ 612,
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We consider translationally invariant initial conditions. Inthe  (2) §<\. As a consequence of the large time behavior of
mean-field approximation, diffusion rates do not have anya, a—0, it is seen from Eq(5) that at large timesi— 1.
effect on the evolution equations of average number densbefining e:=|1—u|,

ties. The mean-field equations for the average densities

:=(A); andb:=(B), are e~all =M+ 7
da ) To obtain the large time behavior afandu, we should use
at —\a“—dab, again Egs(2) and(3), which give

2 ~t 1
db_ . a(t)~t -, "
a——)\ b“— sab. 11— u(t)|~t~ A= omia+an),

The large time behaviors of these equations for specialvhich means that at large times both the minority and the
choices of parameters have been studied in Réf3,1].  majority species decay with the same rate. The exponent of
Now, we want to solve these equations exactly and then weecay rate does not depend on the diffusion rates.

will show that there are cases which are not considered in (1) A\#\’. For this case one arrives at

Refs.[12,11], and give qualitatively correct result for large

time behaviors, although the exponent of the decay rate is du _ [(A=8)— (N =¥d)u]u
not correct. . da (N+du)a ' ©
Consider the following cases.
(I) A\=\". The evolution equation faun:=b/a is which after integration gives
du (N'—6)u (2=N"N)I(5-\")
a—()\—ﬁ)u(l—u)a. (3 1_W (u)* SRRRPISY
Using Egs.(2) and(3), it is seen that 1_m Uo ao
D)
du  (A—d)u(l-u) A (10)
da (A+déuwa @

Now, it is easy to obtain large time behavior of the average
densities. Generally, there are three cases

(1) 6>\,\'. Depending on the initial average densities,
1-8IN the large time behavior of the average densities ratio is

, (5 u(t)—0 (b~a’) or u—w (b~a*"%, which means that
one kind of species decay faster.

whereu, and a, are the initial values ofi and a, respec- (2) 6<A\. Deﬂ/nmg €‘=/“_2(7‘_ 8)I(\' =) , at large
tively. Now, we can obtain the large time behavior of thetimese(t)~al(®=MO'=AVIM'=5] " this case two kinds of
average densities. It is seen that the large time behavior of species decay with the same rate.

which can be integrated to

u—1 l+§/)\(uo

Up—1

a
=l

u

depends on the ratié/\. (3) A< S<\'. At large times the average densities ratio
(1) 5>\. At large times, obviouslya—0, so it is seen u(t)—0, andb~a“*.
from Eq.(5) that depending on the initial valug, two cases As it is seen, in the MF approximation only for a special
may occur choice of parameters, which is independent of diffusion
rates, the two types of species decay with the same rate. The
at large timesi—oe=u~a**"1, b~a?, case with\=\'<§, andD,=Dg has been considered in
Ref.[12]. Using field theoretic renormalization group analy-
at large timesu—0=u~a®*~1, b~a’* sis, it is shown that in one dimension both type of species

decay with the same rate. Monte Carlo data also supports the
Assuming an imbalance in the initial average densitiesfield theory predictions in the one-dimensional model.
for example,ag>by (up<1), Eq.(2) gives the large time

behavior ofa(t), andu(t) as lll. THE CLUSTER MEAN-FIELD APPROXIMATION
a(t)~t™1, Now, we want to use cluster mean-field approximation. If
(6)  the diffusion rate for both type of species is the saiXe,
u(t)~tt-o =2 cluster mean-field approximation gives the same value

for the decay rates for both type of species, even if there is an
which means that fo6>\, in the mean-field approximation imbalance in the initial average densities. If two type of spe-
the minority species dies out earlier than the majority onecies diffuse with different rates, irrespective of the initial
and the decay exponent aft) is independent of diffusion values, at large times particles with greater diffusion rates
rates. decay more rapidly. For the nearest-neighbor interactions,
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FIG. 1. Average densitie§A) and(B) as a function of time. t

The rates ar® ,=Dg=1, A=\"=1000, ands=3000.
FIG. 3. K(t)=(BA)/(AA) as a function of time.

the evolution equation dépoint functions(nyn,: - - ny) con- where P(A|B) is the conditional probability. In the mean-

tains at most K+ 1)-point functions. So, generally, this set .. L :
of equations will be a hierarchy, which cannot be solvedfleld approximation there are three variablés), (B), and

v, O ‘ this difficulty is fo | (), only two of them are generally independent. In the
exactly. ©Une way 1o overcome this difticuily 1S 10 IMPOS€ 5 gjte cluster approximation, or pair approximation, the

constraints on the reaction rates that leads to disappearan\ggri(,ibI es arelA) (B). (). (A, (BGY. (T

of (I_<+1)-po_int funct_ions from the evolution equation of among theme<thza're< a>r’e <six>’in<depe>r’1d<ent \>/:':1r<iableé’ \./v.h.i(;h we
k-point functions. This method has been used to calculat%hoose to beA), (B), (AA), (BB), (AB), and(BA). In
some correlators exactly in RefL]. Another possible way is fact in the pair approximation, besides the average densities

to use the cluster approxm_anon. In _tllmesne cluster ap- the two-point functions can also be obtained. The equations
proximation, the set of evolution equations truncates and one . .
f motion for the average densities whBp=Dg=:D are

encounters with a closed set of equations which may be soh?
able, at least numerically. Any how, for a two-site cluster

S T i~ d(A) 1) o
approximation, a three-site joint probability for a sequence of ——=—\(AA)— =(AB)— = (BA),
nearest-neighbor sites is approximated by dt 2 2
(12)
d(B) 1) 1)
P(A,B)P(B,C) &~ MBB~(AB) 5 (BA).
P(A,B,C):P(A|B,C)P(B,C)z W,
(12) Similarly to the mean-field approximation, the diffusion rates
do not appear in the evolution equations of the average den-
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FIG. 2. Ratio of average densitiagt) =(B)/(A), as a function
of time. For the dashed line, the rates & g=Dzg=1, A=1000, FIG. 4. Average densities as a function of time. The rates are

\"=500, ands=3000. D,=0.1 andDg=1.
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FIG. 5. Average densities as a function of time. The rates are

Da=1 andDg=0.1. FIG. 7. K(t)=(BA)/(AA) as a function of time. The rates are
N=250,\'=100, §=300, and the greater diffusion rate is 1, and

sities. But in fact, they affect the average densities througlhe smaller one is 0.1.

the evolution equations of two-point functions, which are

KBA 5<BA) 5{BAB) 6(ABA} D(BAQD)
d(AA A o o =5 5 -5 -
<dt ) _ S(AR) = M(AAR) — = (AAB)— 5 (BAA) ol 2 2 2
—D(DBA)+2D(BJA). (16)
—D(AAD)—D(TAAY+2D(ATA), (13
To solve these equations in the cluster approximation, one
d(BB) \ S P should first approximate three-point functions and then all
e E(BB)—A(BBB}— E(BBA}— §<ABB> the equations should be expressed in terms of independent
variables. For examplé ABZJ) can be written as
—~D(BBJ)—D(ZBB)+2D(BJB), (14)
(BBY)—D(BB)+2D(BUB) (ABY(BD)
(ABD)~——=v—" 17
dAB) & 5 5 (B)
t and then using probability conservatiofB&J) should be
~D(@AB)+2D(ADB), (15  expanded,
0 10 20 30 (B)=(B)—(BA)—(BB). (18
T U L4 T l U T T U | T U T T l U
s ,/ . A. Dp=Dg
3 // D, )0, 3 Figure 1 and 2 show results fQA}, (B), and the density
; - — - b. (D ratios u(t) :=(B)/(A) obtained using numerical solutions of
B A Eqgs.(12—(16). As it is seen both types of species decay with

the same rate irrespective of equality or inequality of reac-
o tion rates N and N'. In the MF approach, K(t)
:=(BA)/(AA) is not an independent quantity and is
(B)I{A). But in the CMF approach it is an independent one
and the numerical result obtained for it is plotted in Fig. 3.
As it is seen, in the CMF approximation it approaches a
constant value at large times, means that bgi#) and
(BA) decay with the same rate. Equality of their decay rates
is independent of equality or inequality of reaction rakes
0 and\’.

[ oy

u ()=<B>/<A>
N

I
e

FIG. 6. u(t)=(B)/(A) as a function of time. The rates axe B.Da#Ds
=2400, ' =1000, 5§=2500, and the greater diffusion rate is 1, As MF equations are independent of diffusion rates, their
and the smaller one is 0.1. solutions remain unaltered. But in the pair approximation,
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only Egs.(12) remains unaltered. The diffusion rai in in Figs 4 and 5. As it is seen, at large times, species with

Egs.(13) and(14) should be changed properly B, or Dg, greater diffusion rate dies out faster. If species with greater
and the Eqs(15) and(16) become diffusion rate are in majority initially, there is a crossover, as
dAB 5 5 5 it is seen from Fig. 4. The general behavior of the average
dAB) =— ~(AB)— =(BAB)— -(ABA)— Dg(ABJ) densities ratio is independent bf X', andé, and the gen-
dt 2 2 2 eral form of large time behavior is determined by the diffu-
—DA(DAB)+(Da+Dg)(ATB), (19  Sion rates. See Fig. 6. The numerical resultsK¢t) have

been summarized in Fig. 7.
d(BA)
dt

s 5 5
=~ (BA)~ 5(BAB)~ 5 (ABA) ~ DA(BAD)
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